Hang loose!

As of June 1st I will start a new adventure at SURF! After two years of having to deal with corporate enshittification I’m extremely grateful that I can be a part of this fantastic organization. It took me almost 20 years to get an appointment, I first applied there in June 2005 when it was still called SARA. Third time’s a charm I guess, I also applied for a position back in December but since that was for a storage specialist there wasn’t a full match.

Looking forward to starting there. Back to the field of education and research, I worked in that field before at the University of Amsterdam for 8 years back in the 00s. It feels like the circle is round, at the UvA I tried really hard to get a Linux position but I was deemed too light for every application I did. But now almost 15 years later with a lot more experience and a solid resume I really was a valid contender for this position, for which I’m happy and also a bit proud.

I’m assigned an Specialist Engineer position within the internal operations team, in my case specialist as in Linux specialist. Work location will be the SURF location at the Science Park in Amsterdam, close to the infamous CWI. Can’t wait to have a daily Linux driver again instead of running a non-sanctioned OS with FreeRDP to be able to access my backlog. But first, document everything, improve and update existing documentation and transfer as much knowledge as possible to my current team members. And also migrate all Ubuntu 20.04 machines and getting the whole software stack to run containerized.

Hang loose!

Using Vim with ALE for Python linting and autocompletion

At work we use VS Code but if possible I would prefer not to use that on my work station at home. Since I’ve been apt purging nano for ages I started looking for a way to do this with Vim. In the end it turned out to be quite simple on my Debian Bookworm install.

Prerequisites

You will need the following packages:

  • vim
  • flake8
  • python3-pylsp
  • vim-ale

Install them with sudo apt install vim flake8 python3-pylsp vim-ale.

Configuration

Add the following lines to your .vimrc and you should be good to go!

packadd! ale
let g:ale_completion_enabled = 1
let g:ale_linters = {'python': ['pylsp']}

On Ubuntu the situation is a bit different, the linter to add for autocompletion is called pyls but the executable is called pylsp. So to have ALE load the correct executable some extra configuration is needed.

packadd! ale
let g:ale_completion_enabled = 1
let g:ale_linters = {'python': ['pyls']}
let g:ale_python_pyls_executable = 'pylsp'

Todo: Check if flake8 dependency is really needed.

Using Vim with ALE for Python linting and autocompletion

Turntables II

Ran into a SL1210MK2 for about the same price as a new Super OEM on a Dutch second hand market place so went for that. And it was only a 30km drive. It’s quite a battered specimen but the core parts work properly. I did make an appointment with a repair service to take a good look at it. The tone arm connector is worn out and has too much slack, the target light doesn’t work and I’d like to have the RCA cables replaced with better quality ones. And it has some kind of quick start cable that I would like to have removed. And the dust cover is pretty tatty and missing its hinges.

It came with no headshell, the seller offered the original but I declined since I already have an unused original headshell lying around and I was planning on putting a premounted Ortofon 2M Red on it anyway. Got that one in already, together with a nice Tonar Cork ‘n Rubber mat. Also ordered a Rega Fono Mini A2D phono preamp. This model comes with a builtin ADC with a Texas Instruments PCM2900C chipset, so 48kHz/16-bit. This can be very handy for spinning with time coded vinyl, no need to add an extra audio interface to the chain. And yes, already played around with that using Mixxx which works amazingly well.

Turntables II

Turntables

What are the options these days when it comes to buying a new turntable that comes closest to what I already have without having to pay over 1000 Euros? So direct-drive, sturdy, reliable and decent sounding? Enter the Hanpin Super OEMs as they are called. These are the higher level Technics SL-1200 copies that are being branded under a myriad of different names:

  • Pioneer PLX-1000
  • SYNQ XTRM1
  • Reloop RP-7000 MK2
  • Reloop RP-6000 MK5 S
  • Omnitronic 5220/5250
  • Audio-Technica AT-LP1240
  • Mixars STA
  • Stanton ST-150

These are apparently all the same Hanpin DJ-5500 model with slightly varying features. Out of the above list only the Pioneer, SYNQ and Reloop RP-7000 MK2 models are currently available. But which one to choose? Inching toward the Reloop since that turntable has a height adjustable tone arm and personally I think it looks the best of all three contenders. But then this DJ-5500 design is like over 15 years old and apparently has some issues (hum with certain elements, anti-skating not working correctly) so maybe I should just go for another second hand SL-1200?

Argh, why didn’t I buy both SL-1200s back when I bought mine, together they were 700 Euros…

Turntables

Running your own Mastodon instance with Docker

This is on a Ubuntu 22.04 server. Install the necessary Docker packages first.

sudo apt install docker-compose-v2

Add a mastodon user with UID and GID 991.

sudo groupadd -g 991 mastodon
sudo useradd -u 991 -g 991 -m -d /srv/mastodon -s /bin/false mastodon

Now cd to /srv/mastodon, clone the Mastodon repository and check out the current version.

git clone https://github.com/mastodon/mastodon.git .
git checkout v4.2.8

Build the Mastodon image and set correct ownership of the public directory.

docker compose build
sudo chown -R mastodon: /srv/mastodon/public

Now run the Mastodon setup step.

copy .env.production.sample .env.production
docker compose run --rm web rake mastodon:setup

Fill in the necessary details but leave the Redis password blank. Make sure the (sub)domain you want to use has a proper DNS record. The setup outputs a set of variables, copy and paste those into .env.production after having deleted the old content. Since this file contains credentials you could chmod 400 it so only the user firing up the Docker setup has read access.

Start the Mastodon stack.

docker compose up -d

And verify all containers come up healthy. Now you can put your Mastodon instance behind a reverse proxy. I’m running Apache myself and the configuration below works for me. Bear in mind it relies on a working Let’s Encrypt certificate, you will have to create one yourself.

<VirtualHost *:80>
        ServerName mastodon.yoursite.net
        ServerAdmin yourname@yoursite.net
        AssignUserID mastodon mastodon # Only applicable when using MPM-ITK

        DocumentRoot /srv/mastodon

        <Directory />
                Options FollowSymLinks
                AllowOverride None
        </Directory>

        Redirect permanent / https://mastodon.yoursite.net/

        ErrorLog ${APACHE_LOG_DIR}/mastodon.yoursite.net.error.log

        # Possible values include: debug, info, notice, warn, error, crit,
        # alert, emerg.
        LogLevel warn

        CustomLog ${APACHE_LOG_DIR}/mastodon.yoursite.net.access.log combined

</VirtualHost>


<VirtualHost *:443>
        ServerName mastodon.yoursite.net
        ServerAdmin yourname@yoursite.net
        AssignUserID mastodon mastodon # Only applicable when using MPM-ITK

        ProxyPreserveHost On
        ProxyPass /api/v1/streaming http://localhost:4000/
        ProxyPass / http://localhost:3000/
        ProxyPassReverse / http://localhost:3000/

        RequestHeader set X-Forwarded-Proto "https"

        SSLEngine on
        SSLProxyEngine on
        SSLCertificateFile      /etc/letsencrypt/live/mastodon.yoursite.net/cert.pem
        SSLCertificateKeyFile   /etc/letsencrypt/live/mastodon.yoursite.net/privkey.pem
        SSLCertificateChainFile /etc/letsencrypt/live/mastodon.yoursite.net/chain.pem

        # intermediate configuration, tweak to your needs
        SSLProtocol             all -SSLv3 -TLSv1 -TLSv1.1
        SSLCipherSuite          ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305
        SSLHonorCipherOrder     off
        SSLCompression    off

        # HSTS (mod_headers is required) (15768000 seconds = 6 months)
        Header always set Strict-Transport-Security "max-age=15768000"

        ErrorLog ${APACHE_LOG_DIR}/mastodon.yoursite.net.error.log
        CustomLog ${APACHE_LOG_DIR}/mastodon.yoursite.net.access.log combined
</VirtualHost>

Reload Apache and visit your Mastodon instance with the admin account you created. The result of these steps can be found here: https://mastodon.autostatic.net

References:

Running your own Mastodon instance with Docker

Bye cable, hello glass

Bit the bullet a few months ago and decided to go for a glass fiber connection. So after 25 years of cable internet from Casema/Ziggo we’re now hooked up to the optic fiber universe. Let’s see if it turned out to be the right decision.

Last year our whole region got a glass fiber network and getting your household hooked up was free of charge initially. But that changed now and just before getting charged for a connection I applied to get it done. Also the new provider has cheaper subscriptions, multiple TV channels with Ziggo were not working properly and with a glass fiber connection we will be ready for the future. I did look up to it though because for getting connected some work had to be done in our front yard. And even though it turned out ok-ish in the end I wasn’t really happy with the unannounced ventures in our front yard. Quite a part of the garden had to be opened up twice and everything isn’t really put back the way it was. Definitely no gardeners but that’s completely understandable.

Today the last things were taken care of, the media converter has been installed together with the router of the provider. The employee of the provider made sure everything worked properly and was done in less than an hour. After he left I only had to pull the network cable of my home network out the new router, stick it in the media converter, configure IPTV for VLAN 300 and tada, working internet with my own router setup (two Asus RT-AC68U’s in an AiMesh configuration). Took out the new router of the meter cupboard and loaded my stash of beer back in.

And is it faster? Partially. I already had a 1Gbit/s connection with Ziggo, but that was an asynchronous connection so upload is way faster now, about 8 times. Other pro is that the media converter is way smaller and probably draws less power. Other than that nothing really changed after the media converter which I like, fortunately there was no need to overhaul my whole home setup.

Bye cable, hello glass

rtcqs v0.6.1 released

A new version of rtcqs, a Linux audio performance analyzer, is now available. Most notable changes include:

  • Fixed inconsistent use of single and double quotes
  • Replaced audio group check with a group agnostic check (fixes #4)
  • Governor check can now deal with systems that have SMT disabled
  • Tickless check now deals with all CONFIG_NO_HZ* variants and with nohz being set on the kernel command line (fixes #8)
  • File systems check has been expanded
  • IRQ check now loops through /sys/kernel/irq instead of parsing /proc/interrupts
  • rtprio check now checks if a SCHED_FIFO priority can be set instead of a SCHED_RR priority
  • Improved preempt RT check, check if “preempt=full” is part of the kernel command line (fixes #7)
  • Refactoring, created separate classes for main app, resources and GUI
  • Moved all packaging directives into pyprojects.toml

While working on this release I found out PySimpleGUI is not open source anymore so rtcqs’ GUI has become a bit of a moving target. I’m looking at alternatives like pygubu or even popsicle but that will be something for in the long run. In the short run there are more improvements in the pipeline. The swappiness check needs some attention and same goes for the IRQ check. I’ve been working on a different project to automate prioritizing IRQs and I’m planning to to reuse some parts of that project for the IRQ check in rtcqs. The idea is to have rtcqs not only list the status of all audio related IRQs but also any audio devices attached to those IRQs.

rtcqs is available on Codeberg, PyPI and is also included in the AUR.

rtcqs v0.6.1 released

New notebook – The verdict

Well, Phoronix did a review of a similar machine and apparently it’s far from being a slouch and also has the fastest integrated GPU currently available. More on that GPU later. So no regret when it comes to those performance benchmarks. Actually no regret at all, so far the notebook performs really well.

There are some more things worth mentioning that add up to the positive verdict besides all the pros I already mentioned in my earlier posts. There is the battery life which is still pretty good given the performant and power greedy CPU. It can run for hours when idling. When running Ardour it’s done in about two hours though but then I work with all the sluices wide open. But it charges pretty fast. Another thing that struck me is that the notebook is so much quieter than the old one. And the keyboard is just really nice now that I got a bit more used to it. And I managed to map the last media key, the stop one, to something useful with my old friend xdotool. Mapped this media key to the “stop/cancel” keycode using udev and added a keyboard shortcut in XFCE that gets triggered by this keycode and that executes a small script that looks like this:

#!/bin/bash

xdotool search --classname ardour_ardour key --delay 100 h space h

Now if Ardour is running and I press the Stop media key, xdotool sends the key sequence “h space h” to Ardour with a delay of 100ms between the key strokes. “h” sets the playhead to start, “space” stops the transport and another “h” to be sure the playhead is at the start position. Only thing that I’d like to add is some kind of detection if transport is running or not.

Also managed to achieve an even lower latency with my USB interface by adding the option implicit_fb=1 to the snd-usb-audio kernel module. This not only gets rid of the kernel ring buffer getting flooded with warnings but it also results in clean audio at 32*3/48, so 2ms of nominal latency. So it’s on par with my old notebook, albeit with some more headroom. Lower doesn’t seem to be possible, it results in slowed down, distorted audio.

So would I advise everyone doing Linux audio to get this notebook or a similar spec’d one? Well, there’s this GPU that still seems to be a bit too new, too shiny and too fast for the kernel I’m currently running (6.7.2) so I’m getting reliable crashes with software like OwlPlug and occasional crashes when connected via HDMI to a second screen. But it’s tolerable and it will probably get sorted out sooner or later. Other than that, this thing flies and hopefully I can do another decade with this machine.

Edit: worked around the GPU crashing by copying /usr/share/X11/xorg.conf.d/10-amdgpu.conf to /etc/X11/xorg.conf.d/10-amdgpu.conf and disabling hardware acceleration by adding the line Option "Accel" "off" to it. Content looks like this:

Section "OutputClass"
        Identifier "AMDgpu"
        MatchDriver "amdgpu"
        Driver "amdgpu"
        Option "HotplugDriver" "amdgpu"
        Option "Accel" "off"
EndSection

After restarting Xorg I can now open OwlPlug without issues.

Edit: GPU crashes have been resolved by installing the firmware-amd-graphics from the bookworm-backports repository (version 20241210-1~bpo12+1) and by setting /sys/class/drm/card0/device/power_dpm_force_performance_level to high instead of auto.

New notebook – The verdict